A FAMILY GUIDE FOR STUDENT SUCCESS

MISSISSIPPI DEPARTMENT OF EDUCATION
Ensuring a bright future for every child
The MDE would like to thank the following individuals for their expertise, commitment, and time devoted to the development of this guide.

FAMILY GUIDE FOR STUDENT SUCCESS COMMITTEE

- Melissa Banks, MAT, NBCT
 INSTRUCTIONAL TECHNOLOGY SPECIALIST
 MISSISSIPPI DEPARTMENT OF EDUCATION

- Jayda Brantley, M.S., M.Ed., CALT, LDT
 INTERVENTION SPECIALIST
 MISSISSIPPI DEPARTMENT OF EDUCATION

- Alicia Deaver, M.S., CCLS
 EARLY LEARNING COLLABORATIVE COORDINATOR
 MISSISSIPPI DEPARTMENT OF EDUCATION

- Beth Garcia, B.S., NBCT
 RANKIN COUNTY SCHOOL DISTRICT

- Brandy Bell Howell, B.S.
 ITAWAMBA COUNTY SCHOOL DISTRICT

- Jena Howie, B.A.
 YAZOO CITY MUNICIPAL SCHOOL DISTRICT

 NORTH TIPPAH SCHOOL DISTRICT

- Robin Lemonis, M.Ed., CALT, LDT
 DIRECTOR OF STUDENT INTERVENTION SERVICES
 MISSISSIPPI DEPARTMENT OF EDUCATION

- Paula Nowell Phillips, B.S., NBCT
 NORTH TIPPAH SCHOOL DISTRICT

- Bobby L. Richardson, M.Ed.
 INTERVENTION SPECIALIST
 MISSISSIPPI DEPARTMENT OF EDUCATION

- Laurie Weathersby, M.Ed., CALT, LDT
 INTERVENTION SPECIALIST
 MISSISSIPPI DEPARTMENT OF EDUCATION

STUDENT EXPECTATIONS

Parents are their child’s first teachers in life and know their child better than anyone else. Parents have valuable insights into their child’s needs, strengths, abilities, and interests. The collaboration of parents and educators is vital in guiding each child toward success. The *Family Guide for Student Success* outlines what your child should learn at each grade level from pre-kindergarten through eighth grade. You can encourage your child’s academic growth by reinforcing classroom activities at home. The *Family Guide for Student Success* booklets represent what all students should know and be able to do at the end of each grade level. The achievement of the expectations will help your child meet the assessment standards established by our state. It is only through your support and active participation in your child’s education that we form a partnership for success for all the children in Mississippi.

If you have special questions regarding curriculum or school programs, please call your child’s school. Do not be afraid to reach out to your child’s teacher for additional activities to support mastery of the standards. This guide will help set clear and consistent expectations for your child, build your child’s knowledge and skills, and help set high goals for your child.
READING

In grade 8, your child will continue reading and writing, but in addition to stories and literature, he will read more texts that provide facts and background knowledge in areas including science and social studies. He will read more challenging texts and be asked questions that require him to refer back to what they have read. There will also be an increased emphasis on building a strong vocabulary so that your child can read and understand challenging material. Your child will read major works of fiction and nonfiction from all over the world from different time periods. He will continue to learn how to understand what he reads and how to evaluate an author’s assumptions and claims. He will also conduct research that will require the analysis of resources and accurate interpretation of literary and informational texts. Activities in these areas include:

- Reading, analyzing, and annotating a literary text to comprehend what the author says explicitly and to discover the levels of meaning embedded deeply within complex literary texts.

- Provide an analysis of a modern literary text draws on themes, patterns of events, and/or character types, including describing how the material is rendered new.

- Reading, analyzing, taking notes and/or annotating a text for evidence to use in assessing whether or not the reasoning is sound and the evidence is relevant and sufficient.

- Conduct self-checks to ensure comprehension of an informational text, persevere through difficult sections, examine unfamiliar words or phrases and attempt to uncover the meaning of unknown words.

- Providing textual evidence that most strongly supports analysis of what the text says explicitly.

HELP AT HOME

- Have your child read to find the author’s purpose and overall message of the text. To guide thinking, have your child mark the text as he reads. Highlight repeated ideas or patterns throughout the text, each with a separate color. This will help your child determine the author’s overall message. Instruct your child to sort the highlighted information into categories (e.g., evidence that is weakly tied to the overall theme and evidence that is strongly tied to the overall theme).

VOCABULARY

THEME is the central, underlying, and controlling idea of a work of literature. It is the lesson or “moral” the author is trying to teach the reader. For example, the theme of “The Ugly Duckling” by Hans Christian Andersen is the search for personal identity or uniqueness, rather than conforming to society's standards.
Your child can determine a theme or central idea of a text and analyze in detail its development over the course of the text. He can also provide an accurate summary of the text based on this analysis.

- Record repeated messages or patterns observed within various story elements.
- Note how recurring interpersonal conflicts between characters, setting changes, and plot twists all influence or shape the theme and guide the reader toward realizing the theme in its entirety.

HELP AT HOME

› Have your child use a story map like the one below to reveal the overall theme of the text. Seeing the basic story elements (characters, setting, plot, and theme) broken down into manageable pieces, your child should be able to write a summary of how the central idea changes over the course of the text.

HELP AT HOME

› After reading a text, go back through and have your child determine (mark or highlight) critical turning points in the story, analyze the internal and external choices of the characters, and examine the conflicts in the story to see how the momentum of the story builds.

› Once the critical moments have been identified, your child should explain the cause and effect that the critical moment had on the plot of the story.

RESOURCES

SAMPLE STORY MAP

<table>
<thead>
<tr>
<th>STORY ELEMENT</th>
<th>Example</th>
</tr>
</thead>
</table>
| CHARACTERS | • Who are the people who were involved?
• Which ones played major roles?
• Which ones were minor? |
| SETTING | • Where and when did this event take place?
• Over what period of time did the event occur? |
| PLOT | • Problem/Goal: What set events in motion?
What problem arose, or what were the key players after?
• Events/Episodes: the key steps or events that capture the progress of the situation.
• Resolution/Outcome: How was the problem solved? Was the goal attained? |
| THEME | • The larger meaning or importance, the moral, the “so what?” |

VOCABULARY

A struggle that takes place in a character’s mind is called an **INTERNAL CONFLICT**. For example, a character may have to decide within himself between right and wrong.

A struggle between a character and an outside force (another character, the community, or nature) is called an **EXTERNAL CONFLICT**. For example, a main character who is struggling against an arctic winter cold is experiencing an external conflict with nature.
To help your child analyze story structure, use the “S.T.O.R.Y.” Method:

- **S** Identify the setting.
- **T** Which characters are doing most of the talking?
- **O** Oops! There’s a Problem! What is it?
- **R** How is the problem resolved?
- **Y** Yes! The problem is solved. How does the story close?

HELP AT HOME

- Discuss with your child what each of the following allusions would mean:
 - If you called a boy a “Romeo,” the allusion is to one of Shakespeare’s plays in which a romantic relationship turns into a tragedy for the doomed tragic hero.
 - What if a person said, “I never thought I’d move back to my hometown, but I guess deep down I’m a Dorothy,” alluding to the “Wizard of Oz” character who learns “there’s no place like home?”
 - What would you expect if I called a certain boy an “Edward”? What about a “Jacob?” “Edward” and “Jacob” both allude to the main characters of the Twilight book and movie series.
 - Challenge your child to think of more allusions, explaining their meanings and sources.

HELP AT HOME

- To understand how the structure and style of text affect meaning, have your child identify the structure and choice of writing techniques the writer uses in their story. Direct your child to look at details such as how chapter titles tie into the overall theme, how the writer uses the structure of the text to affect the meaning, and how the length and pace of certain chapters connect to the plot.
 - Once your child can identify the structure(s) the writer uses, have him compare and contrast two or more texts with different structures. Tell your child to ask himself why the writer made specific structural choices and how these choices affect the reader’s understanding of a text. For example, why did the author use a cliffhanger at the end of the most exciting chapter? Or, why does one author begin a story with a character having a flashback while another author ends a story with one? How do these choices make connections for the reader?

Your child should compare and contrast the structure of two or more texts and analyze how the differing structure of each text contributes to its meaning and style.

Your child should determine the meaning of words and phrases as they are used in a text, including figurative and connotative meanings. He can also analyze the impact of specific word choices on meaning and tone, including analogies or allusions to other texts.

- Identify words and phrases that create and reveal a variety of tones.
- See the link between word choice and tone.
- Analyze multiple texts in which textual references, via allusion and/or allegory, are present.

VOCABULARY

An **ALLUSION** is a brief and indirect reference to a person, place, thing, or idea of cultural, literary, or political significance. It does not describe in detail the person or thing to which it refers. The writer expects the reader to possess enough knowledge to spot and understand the allusion in a text. For example, “this place is like a Garden of Eden,” would be a Biblical allusion to “paradise” in the Book of Genesis.

To help your child analyze story structure, use the “S.T.O.R.Y.” Method:

- **S** Identify the setting.
- **T** Which characters are doing most of the talking?
- **O** Oops! There’s a Problem! What is it?
- **R** How is the problem resolved?
- **Y** Yes! The problem is solved. How does the story close?
Your child should analyze how differences in the points of view of the characters and the audience or reader (e.g., created through the use of dramatic irony) create such effects as suspense or humor.

- Understand the role of point of view in a given text.
- Know that point of view is essentially the lens through which the reader is allowed to see the story.

HELP AT HOME

- Have your child examine one story from a variety of viewpoints. For each different viewpoint, your child should determine what he as the reader knows, versus what other characters know.
- Instruct your child to rewrite the story (or a part of the story) from the point of view of another character. By becoming the “writer,” your child will see how the technique of point of view creates specific tones and moods in the story.
- Have your child watch the musical “Wicked” (clips available online) and compare it to “The Wizard of Oz.” Discuss the point of view of the characters from the two different plays.
- Watch courtroom reality shows to aid your child in understanding how the same situation can be seen and explained very differently from two people with different points of view.

Your child should analyze the extent to which a filmed or live production of a story or drama stays faithful to or departs from the original text or script, evaluating the choices made by the director or actors.

- Understand how any given literary text can be transformed into and presented in an entirely different form (e.g., film or live performance).
- Understand and be able to explain why the film or live performance may be different from the text version.

HELP AT HOME

- Have your child read a text focusing on the following:
 - How do you picture a certain character or setting? What details in the text make you think those things?
 - Then show him the film version of the text or go to a theatrical version of the same story. Have him discuss and record the ways the two presentations were alike and different focusing on the following:
 - How was the performance the same or different from the original text? Do the characters and settings look as you pictured them? Why or why not?
 - Have some scenes or characters been left out of the performance version? Why would the director of the film/play make those choices?
 - Take note of elements like lighting, staging, costuming, and even casting. How do these decisions affect the quality of the performance and the viewer’s ability to grasp the message the author intends?
Your child should analyze how myths, traditional stories, or religious works, such as the Bible, influence themes, patterns of events, or character types in modern works, including how the material is rendered new.

- Understand the timeless nature of literary themes.
- Explore how the same theme is presented across multiple texts (i.e., many Greek myths seek to explain natural phenomena that are also addressed in the Bible).

HELP AT HOME

- Have your child read a variety of texts from different time periods that all focus around a common theme, such as love, friendship, or perseverance. Have your child consider what each author's overall theme communicates about life, and how the author uses events, conflicts, and/or characters to create that theme. Ask your child to reflect on how recent texts often teach the same "lesson" as older texts, yet still stay true to the characteristics of the genre.

HELP AT HOME

- Have your child use the "Monitoring and Clarifying Strategy" when reading at home. Ask your child to begin reading the assigned text and use the steps as he encounters difficulties.

THEME

Discuss with your child the Disney movies “Toy Story,” “A Bug’s Life,” “Finding Nemo,” and “Cars.” Point out how each of these films centers around the characters who are willing to sacrifice their own wants for those of the people they love. The theme of novels works the same way -- thousands of novels seek to reveal the same theme!

By the end of the year, your child should independently and proficiently read and comprehend literature, including stories, dramas, poems, and nonfiction, at the high end of the grade 6-8 text complexity band.

- Read independently on a level that does not cause frustration.
- Acquire the habit of reading independently and closely, which is essential to future success.
- Determine when comprehension of the meaning of the text is lost and apply strategies to increase comprehension when necessary.

HELP AT HOME

- Have your child use the “Monitoring and Clarifying Strategy” when reading at home. Ask your child to begin reading the assigned text and use the steps as he encounters difficulties.

MONITORING AND CLARIFYING STRATEGY

Steps for using the “Monitoring and Clarifying Strategy” when reading:

- Stop and think about what you have already read.
- Reread.
- Adjust your reading rate: slow down or speed up.
- Try to connect the text to something you read in another book, what you know about the world, or to something you have experienced.
- Visualize.
- Reflect on what you have read.
- Use print conventions (keywords, bold print, italicized words, and punctuation).
- Notice patterns in the text structure.
Your child should determine an author’s point of view and purpose in a text, including the role of particular sentences in developing and refining a key concept.

- Recognize how an author’s perspective presents itself within a text.
- Examine a text for overall purpose, personal bias, and opposing viewpoints.

HELP AT HOME

- Listen to a political candidate, motivational speaker, or debate with your child. Discuss the speaker’s perspective, including: key ideas, supporting details, and counterarguments. Ask your child to consider how someone of an opposing viewpoint may respond to the examples, data, or support offered in the original perspective presented. Have your child take note of the author’s tone, choice of words, and use of persuasive language.

Your child should delineate and evaluate the argument or specific claims in a text, assessing whether the reasoning is sound and the evidence is sufficient. Recognize when irrelevant evidence is introduced.

- Dissect the argument presented in a text and analyze the evidence presented.

HELP AT HOME

- Work with your child on analyzing debates, political advertisements, or courtroom reality shows. For example, have your child track claims, facts, and evidence presented as support. The notes taken could be used to determine how direct the link is between the speaker’s overall claim and a piece of evidence. As your child sorts the evidence and repeats this process with a variety of information, your child may notice and discuss patterns. For instance, your child may recognize that a number of texts cite data without having explained the original study, or speakers use weaker evidence (e.g., name-calling, changing topics) to discredit opposition.
Your child should analyze a case in which two or more texts provide conflicting information on the same topic and identify where the texts disagree on matters of fact or interpretation.

- Understand how two or more texts may present the same topic from differing viewpoints.
- Cite instances of disagreement and analyze the basis for these disagreements.

HELP AT HOME

› Read an editorial from the newspaper with your child. As he reads, have your child note the support established by the writer and how those details relate to the writer’s overall message. For instance, have your child consider whether the details are given in order to exaggerate the issue, address the counterargument, or inform the reader. In addition, your child should consider the source of these supporting details and their overall credibility in regard to the given topic.

MATHEMATICS

In grade 8, your child will focus on three critical areas. The first is formulating and reasoning about expressions and equations, including modeling an association in bivariate data with a linear equation, and solving linear equations and systems of linear equations. Your child will also focus on grasping the concept of a function and using functions to describe quantitative relationships. The third focus area is analyzing two- and three-dimensional space and figures using distance, angle, similarity, and congruence, and understanding and applying the Pythagorean Theorem.

Activities in these areas include:

- Writing and evaluating expressions containing exponents.
- Finding the square roots and cube roots of numbers.
- Finding the distance between two points using the distance formula.
- Finding parts of a right triangle using the Pythagorean Theorem.
- Evaluating expressions involving addition, subtraction, multiplication, or division and expressing the answer in scientific notation.
- Determining whether the relationship between two quantities is linear.
- Finding the slope of a line using a table, graph, equation, diagram, and verbal description.
- Classifying equations by number of solutions.
- Determining functions from nonnumerical data.
- Graphing functions in the coordinate plane.
- Using the Pythagorean Theorem to find an unknown side length of a right triangle and to calculate various dimensions of right triangles found in a three-dimensional figure.
- Perform a series of transformations and/or dilations to a figure.
Your child can understand that numbers that are not rational are called irrational.

- Write a fraction or mixed number as a repeating decimal by showing, filling in, or otherwise producing the steps of long division.
- Write a repeating decimal as a fraction or mixed number in simplest form.
- Name all sets of numbers to which a given real number belongs.
- Convert a repeating decimal into a rational number.

HELP AT HOME

- Have your child enter different fractions into a calculator and determine if they are rational or irrational numbers.
- Have your child solve this problem: $1 \div 3$. Your child will find that when he solves this problem, the remainder as a fraction will be $1/3$. However, if he writes the remainder as a decimal he will discover the decimal, 0.3, repeats. This is a rational number.
- Have your child solve $2 \div 7$. Your child will find the remainder can be written as a fraction, but not a terminating decimal because $2/7$ is an irrational number.

VOCABULARY

RATIONAL NUMBERS are numbers that can be written as a fraction. They are terminating or repeating decimals.

IRRATIONAL NUMBERS are numbers that cannot be written as a fraction. They are decimals that go on and on with no repeating pattern.

Your child can use rational approximations of irrational numbers to compare the size of irrational numbers, locate them approximately on a number line diagram, and estimate the value of expressions.

- Find the square and cube roots of numbers.
- Estimate square roots and cube roots to the nearest integer using perfect squares and perfect cubes.
- Estimate square roots and cube roots to an appropriate approximation by truncating, or dropping, the digits after the first decimal place, then after the second decimal place, and so on.
- Compare and order rational and irrational numbers using a number line.
- Use the estimated value of an irrational number to evaluate an expression.

HELP AT HOME

- Make a clothesline out of string. Write various numbers (e.g., whole, fractions, decimals, square roots, cubed roots) on cards. Let your child put the cards on the clothesline in the correct order from least to greatest.
- Ask your child which whole number each is closest to on the clothesline.
- Using a calculator, have your child determine if fractions are rational or irrational numbers.
- Have your child solve $1 \div 3$. Your child will find that when he solves this problem, the remainder as a fraction will be $1/3$. However, if he writes the remainder as a decimal he will discover the decimal, 0.3, repeats. This is a rational number.
- Have your child solve $2 \div 7$. Your child will find the remainder can be written as a fraction, but not a terminating decimal because $2/7$ is an irrational number.
Your child can understand and apply the properties of integer exponents to generate equivalent numerical expressions.

- Write an expression using exponents.
- Evaluate an expression containing exponents.
- Simplify expressions involving one, two, or three properties using the Laws of Exponents.
- Write an expression using a positive exponent.
- Write a fraction as an expression using a negative exponent other than -1.
- Multiply and divide with negative exponents.
- Classify expressions by their equivalence to a given expression.

HELP AT HOME

- Review the Laws of Exponents with your child. When multiplying the same base with exponents, add the exponents. When dividing the same base with exponents, subtract the exponents.
- Make a matching game with problems on one set of cards and answers on the other set. Have your child match them up.

RESOURCES

<table>
<thead>
<tr>
<th>Laws of Exponents</th>
</tr>
</thead>
<tbody>
<tr>
<td>product</td>
</tr>
<tr>
<td>quotient</td>
</tr>
<tr>
<td>power</td>
</tr>
<tr>
<td>inverse</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Error</th>
<th>Correct</th>
</tr>
</thead>
<tbody>
<tr>
<td>$x^2y^3 \neq (xy)^2$</td>
<td>The two numbers multiplied do not have the same base.</td>
</tr>
<tr>
<td>$2x^2 \neq \frac{1}{2x}$</td>
<td>There is one (x) around $2x$, the exponent applies only to the x.</td>
</tr>
<tr>
<td>$x^2 \cdot x^3 \neq x^{15}$</td>
<td>See the product law above. Multiplication adds exponents.</td>
</tr>
<tr>
<td>$(x^2)^3 \neq x^6$</td>
<td>See the power law above. When raising a power to a power, multiply the exponents.</td>
</tr>
</tbody>
</table>

End of page.
Your child can use numbers expressed in the form of a single digit times an integer power of 10 to estimate very large or very small quantities, and to express how many times as much one integer is than the other.

- Compare and interpret scientific notation quantities in the context of the situation.
- Evaluate expressions involving addition, subtraction, multiplication, or division and express the answer in scientific notation.

HELP AT HOME
- Using a science book, have your child find actual numbers that are written in scientific notation. The number may be really small or really large. Begin with smaller exponents of 10 to help your child understand the concept and move to larger exponents. For example: $3 \times 10^2 = 300$, $3 \times 10^3 = 3000$. Therefore each time an exponent changes, it multiplies (or divides) the number by a power of 10.
- Have your child add, subtract, multiply, and divide large numbers and write the answers in scientific notation.

HELPFUL HINT
When you move the decimal to the left the exponent increases, when you move the decimal to the right the exponent decreases.

VOCABULARY

SCIENTIFIC NOTATION = one non-zero digit to the left of zero. Has “$\times 10^n$” with an exponent that represents the number of times to move the decimal to make it standard form (e.g., $5,000 = 5 \times 10^3$).

Your child can perform operations with numbers expressed in scientific notation, including problems where both decimal and scientific notation are used. He is able to use scientific notation and choose units of appropriate size for measurements of very large and very small quantities, as well as interpret scientific notation that has been generated by technology.

- Perform operations with numbers expressed in both decimal and scientific notation and express the answer in scientific notation without a scientific calculator.
- Compare and order numbers expressed as decimals and scientific notation without a calculator.
- Choose a meaningful unit of measure in the context of the situation with, and without, a scientific calculator.
- Interpret scientific notation that has been generated by technology.

HELP AT HOME
- Have your child type a large number problem in the calculator (e.g., $90,000 \times 28,000,000$) and determine the answer in scientific notation (e.g., 2.52×10^{12}).

- Have your child add, subtract, multiply, and divide large numbers and write the answers in scientific notation.

<table>
<thead>
<tr>
<th>LEFT</th>
<th>RIGHT</th>
</tr>
</thead>
<tbody>
<tr>
<td>$2,000,000,000$</td>
<td>7.32×10^{-5}</td>
</tr>
<tr>
<td>2×10^9</td>
<td>0.0000732</td>
</tr>
<tr>
<td>$9,876,543,21$</td>
<td>12345</td>
</tr>
</tbody>
</table>
Your child can graph proportional relationships, interpreting the unit rate as the slope of the graph. He is able to compare two different proportional relationships represented in different ways.

- Graph real-world proportional relationships.
- Determine whether the relationship between two quantities is linear.
- Find the constant rate of change in a linear relationship.
- Compare proportional relationship between two different quantities represented in different forms.
- Find the slope of a line using a table, a graph, equations, a diagram, and a verbal description.
- Find the slope of a line that passes through two given points.
- Given an equation of a proportional relationship, your child can graph the relationship and recognize that the unit rate is the coefficient of x.

HELP AT HOME

› Have your child make a table with (x, y) coordinate points. Let the x represent the hours, and y represent the distance. For example, have your child use the formula y = 60x to complete the table. Next he can make a graph with points that satisfy y = 50x. Then he can compare the table and the graph. Are they both proportional? What is the constant rate of each? Which set has the greatest slope?

RESOURCES

SAMPLE FUNCTION TABLE

This function table has the rule, “Add 6 to a number.”

<table>
<thead>
<tr>
<th>x</th>
<th>y</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>6</td>
</tr>
<tr>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>2</td>
<td>8</td>
</tr>
<tr>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
</tr>
</tbody>
</table>

Each row has an “x” number and a “y” number that go together.

The “x” number is the input. Add 6 to this number.

The “y” number is the output. This is the answer to the “x” number plus 6.

HELP AT HOME

› Using square tiles on your floor or paper, have your child draw a right triangle. Then draw a second triangle by extending the sides to the first triangle, so that the triangles are similar. Have him determine the hypotenuse of the first by using a ruler to measure the two legs and solve by the Pythagorean Theorem. Repeat for the larger triangle. Ask, “What did you find about the lengths of the hypotenuse on the two triangles?” Have your child write a proportion comparing the slopes (rise/run) of the two triangles.

VOCABULARY

LEGS
Make up a right angle.

HYPOTENUSE
The side opposite the right angle.

Your child can use similar triangles to explain why the slope m is the same between any two distinct points on a non-vertical line in the coordinate plane. He can also derive the equation y=mx for a line through the origin and the equation y=mx+b for a line intercepting the vertical axis at b.

- Graph two triangles given the vertices of both and determine if they are similar.
- Graph a pair of similar triangles, write a proportion comparing the rise to the run for each of the similar slope triangles, and find the numeric value.
- Choose two pairs of points when given the hypotenuse of a right triangle in a coordinate plane. Record the rise, run, and slope relative to each pair and verify that they are the same.
Your child can solve linear equations in one variable. He can give examples of linear equations in one variable with one solution, infinitely many solutions, or no solutions. He is able to show which of these possibilities is the case by successively transforming the given equation into simpler forms, until an equivalent equation of the form \(x = a, a = a, a = b \) results (where \(a \) and \(b \) are different numbers).

- Solve an equation using the multiplicative inverse.
- Solve an equation using the addition, subtraction, multiplication or division properties of equality to justify the steps to the solution.
- Solve multi-step equations in which coefficients and constants may be any rational number.
- Create equivalent expressions by combining like terms and using the Distributive Property.
- Translate a word phrase or real-world problem into an equation.
- Solve equations with variables on both sides of the equals sign.
- Solve equations containing grouping symbols.
- Determine if an equation has no solution.
- Determine if an equation is an identity with infinitely many solutions.
- Create equations that have one solution, infinitely many solutions, or no solutions.
- Classify equations by number of solutions.

Help at Home

- Give your child equations to solve equations such as: \(3x = 9, 2x + 4 = 10, 5x + 3 = 5x + 7 - 4, 3x - 1 = 3x + 5, 1/3x + 7 = 10, 5(x + 3) = 2(x + 7) \). Determine how many solutions each equation has (one, infinite or none).

Number of Solutions

ONE:	variable = number
INFINITE:	0 = 0
NONE:	0 = any number other than 0

Your child can analyze and solve pairs of simultaneous linear equations. He is able to understand that solutions to a system of two linear equations in two variables correspond to points of intersection of their graphs because points of intersection satisfy both equations simultaneously.

- Graph lines in a plane.
- Use graphs and tables to relate them to equations.
- Interpret a point as an ordered pair \((x, y)\).
- Identify the point of intersection of two lines as the solution to the system.
- Verify by computation that a point of intersection is a solution to each equation in the system.
- Determine the number of solutions using the slope and \(y \)-intercepts.
- Write a second equation to create a specific solution.
- Work without use of a scientific calculator.

Help at Home

- Make the following cards: “7x = 14”, “3y = 6x - 12”, “Mandy paid $4 for each book. She spent $8. How many books did she buy?”, and “\(y = -2x + 5 \)”. Have your child pull two cards. Graph the equations. Determine if there is one, none or infinite solutions. Repeat by replacing the cards and pulling two more cards. Remind your child that the point of intersection (if any) is the solution to the system of equations.
- Have your child check the solution by using a calculator to graph the solutions.

Resources

- The graphs intersect at a single point. There is ONE solution.
- The equations have the same slope. The graphs are parallel. There is NO solution.
- The graphs are identical. There are an INFINITE number of solutions.
Your child can analyze and solve pairs of simultaneous linear equations. He is able to solve real-world and mathematical problems leading to two linear equations in two variables.

- Analyze the relationship between the dependent and independent variables.
- Use variables to represent two quantities in a real-world problem.
- Write an equation to express one quantity in terms of the other quantity.
- Represent proportional relationships by equations.
- Explain what a point on the graph of a proportional relationship means in terms of the situation.
- Interpret solutions in the context of the problem.
- Graph two linear equations on the coordinate grid and find their intersection point.

HELP AT HOME

- Have your child solve situations that have two variables. For example: Keith had 3 hot dogs and 2 drinks. He spent $12. Mary had 2 hot dogs and 4 drinks. She spent $16. How much was each item? Explain what the x and y values mean in this problem. Have your child graph the two systems in terms of \(y = mx + b \), then check the solution on the graph at the point of intersection.

Your child can understand that a function is a rule that assigns to each input exactly one output. He knows the graph of a function is the set of ordered pairs consisting of an input and the corresponding output.

- Determine functions from non-numerical data.
- Graph inputs and outputs as ordered pairs in the coordinate plane.
- Graph functions in the coordinate plane.
- Read inputs and outputs from the graph of a function in the coordinate plane.
- Tell whether a set of points in the plane represents a function.
- Work without the use of a scientific calculator.

HELP AT HOME

- Give your child a set of coordinates to graph. Have him determine if the coordinates create a function. Let him highlight the coordinates if they make a function. Repeat this activity several times with new coordinates.
- Your child can create a function table using the rule “\(y = 2x + 5 \),” then decide if it is a function and explain his answer.

HELPFUL HINT

It is a function if all of the x values are different.

<table>
<thead>
<tr>
<th>COORDINATES</th>
<th>FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(−6, 4)</td>
<td></td>
</tr>
<tr>
<td>(−4, 1)</td>
<td></td>
</tr>
<tr>
<td>(2, 1)</td>
<td></td>
</tr>
<tr>
<td>(6, 4)</td>
<td></td>
</tr>
</tbody>
</table>

The graph is a **FUNCTION** because all of the x values are different.
Your child can compare properties of two functions, each represented in a different way (algebraically, graphically, numerically in tables, or by verbal description).

- Translate among the representations and partial representations of functions.
- Determine the properties of a function from a verbal description, table, graph, or algebraic form.
- Make comparisons between the properties of two functions represented differently.
- Work with a scientific calculator.

HELP AT HOME

- Encourage your child to write down two different linear functions, one in a table and the other in a graph. Instruct him to compare the rate of change in both, and the y-intercept of both, and determine if they are proportional, etc.

HELPFUL HINT

A linear function makes a line when graphed.

Your child can interpret the equation y = mx + b as defining a linear function, whose graph is a straight line, and give examples of functions that are not linear.

- Identify the rate of change between input and output values.
- Provide examples of relationships that are nonlinear functions.
- Create a table of values that can be defined as a nonlinear function.
- Analyze rates of change to determine linear and nonlinear functions.
- Determine rate of change from equations in forms other than the slope-intercept form.

HELP AT HOME

- Have your child cut pictures out of a magazine that represent linear and nonlinear. Put the solutions in two separate piles.
- Write equations on sticky notes. Encourage your child to separate the equations into linear and nonlinear.
- Remind your child that a linear equation only has exponents of 1 or 0 on each variable.

Your child can construct a function to model a linear relationship between two quantities. He can also determine the rate of change and initial value of the function from a description of a relationship or from two (x,y) values, including reading these from a table or from a graph. He is able to interpret the rate of change and initial value of a linear function in terms of the situation it models, and in terms of its graph or a table of values.

- Use variables to represent quantities in a real-world or mathematical problem.
- Analyze a variety of function representations such as verbal description, table, two (x,y) values, graph, and equations.
- Write a linear function modeling a situation.
- Find the initial value of the function in relation to the situation.
- Find the rate of change in relation to the situation.
- Find the y-intercept in relation to the situation.
- Explain constraints on the domain in relation to the situation.

HELP AT HOME

- Write real-world situations that involve functions. For example: Angie bought 6 adult tickets to the movie and 2 children’s tickets. She spent $58. The solution would be 6x + 2y = 58. Have your child find the rate of change when transformed into y = mx + b form ((-1)/3). Determine the y intercept (29). Then have him determine various costs for movie tickets (adult $5, children $14; adult $7, children $8). Last, have him determine if the equation is a function (yes). Repeat using similar examples.

HELPFUL HINT

A linear function makes a line when graphed.
Your child can describe qualitatively the functional relationship between two quantities by analyzing a graph (e.g., where the function is increasing or decreasing, linear or nonlinear). He can sketch a graph that exhibits the qualitative features of a function that has been described verbally.

- Match the graph of a function to a given situation.
- Create a graph of a function that describes the relationship between two variables.
- Write a verbal description of the functional relationship between two variables depicted on a graph.

HELP AT HOME

- Create a story problem in which your child will graph the situation. For example: Sam was driving to school. He stopped for a few minutes to get breakfast. He then continued at a slower rate than before until he got to school. Graph Sam’s trip.

Your child can verify experimentally the properties of rotations, reflections, and translations. He knows lines are taken to lines, and line segments to line segments of the same length. He also knows angles are taken to angles of the same measure.

- Identify lines and line segments in two-dimensional figures.
- Measure and compare lengths of a figure and its image.
- Verify that after a figure has been translated, reflected, or rotated, corresponding lines and line segments remain the same length.
- Determine the change in orientation to isolate the transformations used.

HELP AT HOME

- Have your child draw a figure on graph paper. Then have him trace with wax paper or tracing paper. Have him do a series of rotations, reflections, translations, or a mixture of several. Instruct him to determine what happened to the length of each side and angle.
- Draw a figure and its transformation on graph paper. Have your child determine what transformation took place.
Your child can describe the effect of dilations, translations, rotations, and reflections on two-dimensional figures using coordinates.

- Name an ordered pair as the coordinates of pairs in a coordinate plane.
- Graph coordinates in a coordinate plane.
- Describe the changes occurring to coordinates of a figure after transformations and dilations.
- Determine the new coordinates of an image given the original coordinates and a series of transformations and/or dilations to be applied.

HELP AT HOME
- Continue with the activity on page 34 (clip art manipulation). Now, include changing the size of the clip art.
- Using graph paper, have your child draw a rectangle. Then have him dilate it by a scale factor of 2 (multiply by 2), and draw the new rectangle. Instruct him to write the original coordinates and compare to the new coordinates. Repeat, but this time have him dilate a figure by \(\frac{1}{2} \) and compare the results to the first dilation.
- Pay attention to what changes take place in the coordinates when a figure is dilated.

Your child can verify experimentally the properties of rotations, reflections, and translations. He knows parallel lines are taken to parallel lines.

- Identify parallel lines in two-dimensional figures.
- Measure and compare parallelism of a figure and its image.
- Verify that after a figure has been translated, reflected, or rotated, corresponding parallel lines remain parallel.

HELP AT HOME
- Using the same figures from the previous activity, have your child determine what happens to the parallel lines in the original figure compared to the transformed figure.

Your child can understand that a two-dimensional figure is congruent to another if the second can be obtained from the first by a sequence of rotations, reflections, and translations. Given two congruent figures, he can describe a sequence that exhibits the congruence between them.

- Perform a series of transformations to prove or disprove that two given figures are congruent.
- Describe a sequence of transformations that exhibit congruence of two figures.

HELP AT HOME
- Insert clip art from your computer onto a blank document. Copy and paste the picture. Use the cursor on the computer to flip, rotate, or translate the piece of clip art. Let your child determine which transformation you performed. Now, allow him to complete the process and you decide what transformation took place.

Your child can verify experimentally the properties of rotations, reflections, and translations. He knows parallel lines are taken to parallel lines.
Your child can explain a proof of the Pythagorean Theorem and its converse.

- Use algebraic reasoning to relate a visual model to the Pythagorean Theorem.
- Explain why the Pythagorean Theorem holds.

HELP AT HOME
- Review how to solve an equation with your child.
- Review how to square a number and how to find a square root of a number.
- Have your child draw a right triangle with side lengths measuring 3 cm, 4 cm, and 5 cm. Now have him use the ruler to draw squares of each side attached to it. This will show that $3^2 + 4^2 = 5^2$.

Your child can apply the Pythagorean Theorem to determine unknown side lengths in right triangles in real-world and mathematical problems in two- and three-dimensions.

- Apply the Pythagorean Theorem to find an unknown side length of a right triangle.
- Use the Pythagorean Theorem in a diagram to solve real-world problems involving right triangles.
- Find right triangles in a three-dimensional figure.
- Use the Pythagorean Theorem to calculate various dimensions of right triangles found in a three-dimensional figure.
- Provide answers as whole numbers and irrational numbers approximated to three decimal places with the use of a calculator.

HELP AT HOME
- Lean a ladder against the house. Have your child determine how high the ladder is on the wall by measuring the ladder and the length the ladder is from the base of the house. Have him use the converse of the Pythagorean Theorem to determine how high the ladder is on the wall. Repeat doing similar activities.

RESOURCES
CONVERSE OF PYTHAGOREAN THEOREM
$c^2 - b^2 = a^2$ or $c^2 - a^2 = b^2$
Your child can apply the Pythagorean Theorem to find the distance between two points in a coordinate system.

- Connect any two points on a coordinate grid to a third point so that the three points form a right triangle.
- Use a right triangle built from two original points connecting a third point in a coordinate grid and the Pythagorean Theorem to find the distance between the two original points.

HELP AT HOME

- Tell your child two coordinates. Have him determine a third coordinate to make a right triangle. Then have him use the Pythagorean Theorem to find the measure of the hypotenuse.

Your child can identify and recite the formulas for the volumes of cones, cylinders, and spheres and use them to solve real-world and mathematical problems.

- Use the formula to find the volume of cylinders, cones, and spheres.
- Solve real-world problems involving the volume of cylinders, cones, and spheres.

HELP AT HOME

- Cut open an orange. Have your child measure the radius and determine the volume of the orange by using the volume of a sphere formula.
- Have him determine how many chips would fit into a cylinder container by estimating the volume of a cylinder.
- Have your child determine how much ice cream would fit into a sugar cone.

RESOURCES

VOLUME FORMULAS

CYLINDER	V = πr²h
SPHERE	V = 4/3πr³
CONE	V = 1/3πr²h

NOTE:

V = volume
r = radius
h = height

Your child can construct and interpret scatter plots for bivariate measurement data to investigate patterns of association between two quantities. He can describe patterns such as clustering, outliers, positive or negative association, linear association, and nonlinear association.

HELP AT HOME

- Plot ordered pairs on a coordinate grid representing the relationship between two data sets.
- Describe patterns in the context of the measurement data.
- Interpret patterns of association in the context of the data sample.

RESOURCES

SAMPLE SCATTER PLOTS

POSITIVE CORRELATION

NEGATIVE CORRELATION

NO CORRELATION
Your child can understand that patterns of association can also be seen in bivariate categorical data by displaying frequencies and relative frequencies in a two-way table. He is able to construct and interpret a two-way table summarizing data on two categorical variables collected from the same subjects. He also can use relative frequencies calculated for rows or columns to describe possible association between the two variables.

- Create a two-way table to record the frequencies of bivariate categorical values.
- Compute marginal sums or marginal percentages.
- Determine the relative frequencies for rows and/or columns of a two-way table.
- Use the relative frequencies and context of the problem to describe possible associations between the two variables.

HELP AT HOME
- Have your child collect data that compares Coke and Pepsi as the favorite drink of adults vs. children. Have him organize the results in a two-way table. Next, he can determine the relative frequency of each by dividing the row amount by the total column amount. Ask, “Is there a connection between the age of a person and their favorite drink choice?”

RESOURCES

<table>
<thead>
<tr>
<th></th>
<th>COKE</th>
<th>PEPSI</th>
<th>TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adults</td>
<td>21</td>
<td>6</td>
<td>27</td>
</tr>
<tr>
<td>Children</td>
<td>47</td>
<td>28</td>
<td>75</td>
</tr>
<tr>
<td>Total</td>
<td>68</td>
<td>34</td>
<td>102</td>
</tr>
</tbody>
</table>
Multi-Tiered System of Supports